Quality of Experience for Virtual Reality: Methodologies, Research Testbeds and Evaluation Studies

Mirko Sužnjević, Maja Matijašević

Human-centric Communications in Smart Networks (HUTS) Workshop @ ConTEL 2017
Zagreb, Croatia, 30 June 2017
In the past several years, virtual and augmented reality seems to be finally taking off.

Although neither technology has yet gained a widespread adoption there are devices on the market which are affordable for a wide range of consumers.

New ways of interaction with the VR have been added – controllers and contactless sensing (e.g., Leap Motion, Microsoft Kinect).

June 30th, 2017

- Impact of different system, user, and context parameters on Quality of Experience (QoE) for VR services (very broad area)

- We performed two user studies inspecting different aspects of the QoE problem for VR

- VR is still an emerging technology, but according to Digi-Capital it is predicted that VR and AR markets will grow to 108 billion USD by 2021
Research questions

- How the parameters within the virtual world impact the perceived QoE? (RQ1)
 - Speed of movement
 - Type of movement
 - Level of detail
 - Head Up Display (HUD)

- How the interaction devices impact the perceived QoE? (RQ2)
 - Keyboard and mouse
 - Leap motion
 - Gamepad

- How different systems for VR impact the perceived QoE (with the focus on the interaction)? (RQ3)
 - Oculus Rift
 - HTC Vive
Studies

- Two separate studies performed to answer research questions
- **Study 1** – answers RQ1 and RQ2
 - 15 users
 - 10 male and 5 female
 - Average 24 years old
 - Oculus Rift DK 2
 - Custom application developed for the purpose of testing
- **Study 2** – answers RQ3
 - 13 users
 - 8 male and 5 female
 - Average 26 years old
 - Oculus Rift and HTC Vive compared
 - Custom application developed for the purpose of testing
Study 1 - methodology

- Developed an VR application using unity with modular capabilities
- Modifiable parameters
 - Speed of movement
 - Type of Movement
 - Level of detail
 - HUD
 - Interaction devices
 - Competitive element

- Each user tested all values of all parameters (not all combinations)
- Default combination of parameters was: Oculus, walk, medium speed, large content, no HUD, keyboard and mouse, and no competitive element

- User reported QoE and ease of use for input devices, while on other parameters they just reported the preferred setting

June 30th, 2017
Study 2 - methodology

- **Objective study**
 - Evaluation by an administrator
 - Metrics
 - Frame rate
 - Ambiance light
 - Sensor obstruction

- **Subjective study**
 - Subjective metrics:
 - Quality of Experience,
 - Intuitiveness
 - Ease of use
 - Objective metrics
 - Spatial precision
 - Time to complete a task
 - Users test both systems, one by one, and rate the subjective parameters based on the 7-point Comparison Category Rating (CCR), according to the ITU-T Rec. P.800
Study 2 – VR application

- A simple VR application implementing a pick-and-place task developed by using Unity Game Engine
- Task focused on dexterity – moving of three (small, medium, large) cubes from one position to the other
- In addition to dexterity, tasks were timed to note down the speed and precision of placing the cubes to the final position
- Users were first shortly familiarized with the system with the help of an administrator (e.g., how to grab a cube)
Results – QoE and Ease of use for different input devices

- No distinction between QoE for different input
- Clear distinction for ease of use (leap motion has lowest ease of use due to clumsy functionality)
Results – preferred application settings

- Users prefer flying over walking, and slow movement speed
- There is no agreement regarding level of detail and HUD
Difference between HTC Vive and Oculus Rift

- Both devices have same main characteristics:
 - OLED displays
 - 2180 x 150 resolution
 - Refresh rate of 90Hz
 - Field of view of 110 degrees

- HTC Vive was released with controllers and two sensors which track both controllers and Head Mounted Display (HMD)

- Oculus Rift is released without controllers and with one sensor for tracking HMD – controllers were released as a separate product later with additional sensor tracking only controllers.
Results – objective comparison of VR systems

- HTC Vive consistently outperformed the Oculus Rift by 5% in terms of frame rate (both devices have above 90 fps)
- Both devices remain equally unaffected by visible light
- Infrared light causes significant interference for both devices (e.g., Microsoft Kinect camera)
- HTC Vive’s sensors simultaneously track both the head-mounted display and controllers, while Oculus Rift has one sensor dedicated for each device
- HTC Vive is more resilient to sensor obstruction due to better initial positioning and tracking technique
Results – spatial precision and time to complete the task

- In terms of spatial precision there is no difference between devices.
- In terms of time to complete the task, more time is needed to move the cube with Oculus Rift than with HTC Vive.
Results – subjective metrics

- HTC Vive performed slightly better on evaluated subjective metrics, especially on overall QoE.
- The most frequent users’ complaint was related to the need to maintain line-of-sight while using Oculus Rift, which limited their natural movement.
Conclusions

- Our testing group does not have a specific preference between custom input devices if they work properly.
- Our testing group preferred flying over walking in VR, as well as slower speed.
- The comparison study suggests that HTC Vive was evaluated better by our test group on all subjective metrics, and that it performed better on several objective metrics.
- Majority of advantages can be attributed to the HTC Vive sensor system which is more robust to loss of tracking than Oculus Rift.
- For future testing the same sensor composition is needed (an additional sensor for Oculus Rift).